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Particle size distributions in atmospheric clouds

By Roberto Paoli & Karim Shariff t

In this note, we derive a transport equation for a spatially integrated distribution function
of particles size that is suitable for sparse particle systems, such as in atmospheric clouds.
This is done by integrating a Boltzmann equation for a (local) distribution function over
an arbitrary but finite volume. A methodology for evolving the moments of the integrated
distribution is presented. These moments can be either tracked for a finite number of
discrete populations ("clusters") or treated as continuum variables.

1. Introduction

Particles are present in atmospheric clouds in several forms such as liquid droplets, non-
volatile aerosols or ice crystals. Their microphysical properties control many processes
such as the production of rain in stratocumulus clouds and radiation through cirrus
clouds. These properties depend on the way particles interact with the surrounding air,
through fluid-dynamic and thermodynamic processes. As these processes usually take
place at small spatial scales, the interaction of particles with atmospheric turbulence is an
important, though complex, problem in cloud physics (Shaw 2003). From a computational
point of view, two major factors contribute to this complexity. First is the very high
turbulence Reynolds number and the large range of spatial scales (Vaillancourt & Yau
2000; Shaw 2003): for convective clouds, the ratio of energy-containing to dissipative
length scales is 0(10'), while the Reynolds number of the largest eddies is 0(106 to
10'). The second factor is that the mean distance A between particles is of the order of
the Kolmogorov scale 77. Thus, if one contemplated direct numerical simulation (DNS)
where all spatial scales are resolved, then one would have to track individual particles.
Since DNS resolution is not affordable for these flows, Eulerian formulations for the
liquid/solid phase are widely used in the simulation of clouds. These formulations fall
into two main classes. The first is a "two fluid model" where particles are modeled as
a continuum having a local mass density per unit volume. This approach carries no
information about the distribution of the particle size. In the second approach, some
physical properties (e.g. the mean radius) of some "ensemble" of particles are explicitly
computed at each physical location x. The concept of particle size distribution at a
point at this stage of our discussion is ambiguous but will be clarified later. A standard
procedure used in two-phase flow models (e.g. Williams 1965; Cotton & Anthes 1989;
Crowe et al. 1998) to describe an ensemble of particles is to define a distribution function
f, in a manner analogous to the kinetic theory of gases. In kinetic theory, a distribution
function f(x, v; t) is defined where f(x, v; t) x Jv represents the number of molecules
that at time t are between x and x + Jx and whose velocity is between v and v + 6v.
It is assumed that, as (bx, Sv) --* 0, the phase volume still contains a sufficently large
population of molecules that statistics can be used. This is usually true in gasdynamics
because the mean free path of molecules is much smaller than the continuum scale one
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cares about. The extension of this appraoch to particles other than molecules is formally
straightforward (see for example the book by Williams 1965), as long as the continuum
description remains valid. In the case of atmospheric clouds however, A -- 77 so that only
a few particles rather than a population are present in a volume V = O(,q3). The object
of this note is first to derive a transport equation for an integrated distribution function
YFo, describing an ensemble of particles inside an arbitrary but finite volume Vo. Then,
this approach is specialized to atmopsheric clouds. Finally, a methodology is proposed
to solve for the moments of the distribution function .To.

2. Distribution function in atmospheric clouds

Let us consider a population of particles in a cloud from an ensemble of realizations.
At any time t, each particle p occupies the position xp(t) in physical space, moves with
velocity up(t) and changes its radius rp(t). This population can be represented in a
phase space, defined by the generalized coordinates q(t) and evolving via the generalized
velocities U(q(t)):

[r(t)] dq (q(t))1
q(t)= x(t)t, U(q(t)) = -- u(q(t)) (2.1)

u(t) Jdt F(q(t)) I

where x and u are the spatial coordinates and velocities, F is the functional law of the
force per unit mass acting on the particle and t is the functional law of the growth rate
of its radius. At any time t, each particle of the population occupies a point q(t) in this
space. Instead of tracking each particle we wish to follow the evolution of a distribution
function f(q(t); t) of the population. This is defined in such a way that

f(q(t); t) 5Q(t) (2.2)

is the number of particles that at time t are inside a cube of volume JQ(t) in phase space,
located between the coordinates q(t) and q(t) + 5q(t). After a time dt, this volume has a
value 6Q(t + dt) and the diagonally opposite corners of the cube are mapped to q(t + dt),
and q(t + dt) + 6q(t + dt), respectively. At the same time, each particle can change its
q and the particle number can vary because of evaporation or coagulation. To derive
a transport equation for f we need to relate these quantities. For the sake of clarity,
we will drop the explicit dependence on t in all variables, and define t' - t + dt, and
q q(t + dt). Then we have

q' = q + U(q) dt (2.3)

q' + 6q' = q + 5q + U(q + 5q) dt (2.4)

The last term in (2.4) can be expanded as U(q + 6q) = U(q) + (VqU)5q where VqU is
the gradient of U in phase space. Substituting (2.3) into (2.4) one gets

5q' (I + dt VqU) 5q (2.5)

The change of phase space volume 5Q' - bQ is related to the divergence of the generalized
velocity U by

Q - (Vq U) dt + O(dt2 ) (2.6)

l-6Qi
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Let K(q; t) describe the general rate of gain or loss of particle number due to coagulation
or evaporation,

f(q'; t') 6Q' = f(q; t) JQ + K(q; t)dt 5Q (2.7)

Substituting (2.3), (2.4) and (2.6) into (2.7) and expanding gives:

[f+ (L+Vqf-U) dt+o(dt2) [1 +Vq'Udt+Q(dt2)] 6Q = f JQ+KdtSQ (2.8)

where all quantitites are evaluated at t. Taking the limit dt -* 0 and neglecting higher
order infinitesimals gives a Boltzmann equation

-- + Vq .(fU) = K (2.9)

Finally, inserting the different components of q and U by means of (2.1) gives the more
usual form employed in two-phase flow literature (e.g. Williams 1965):

af"+ Vx. (f u) + Vu. (f F) + !(r- K = K (2.10)

The term F in (2.10) is the aerodynamic drag induced by the flow on particles, F Z
(uP - Uf)/T-p (see Crowe et al. 1998) where uf is the fluid velocity and rp = 4pp r2/18p
is a relaxation time. If the size of the particle rp is small, r-p is also small and the particle
velocity immediately adjusts to the flow velocity. In the following, we restrict our analysis
to this case, so there is no dependence on F in (2.10):

-f + Vx. (f u) + !L = K (2.11)
5T ar-

3. Integrated distribution

We now derive an integrated version of (2.11). Consider a point xo in physical space and
an arbitrary (but finite) volume Vo(xo(t) around it. Then, a space integrated distribution
function Fo(r, xo; t) can be defined as

.To(r, xo; t) = JV. f(r, x; t) dVo(x) (3.1)

so that -1o(r, xo; t) Jr represents the number of particles that at time t are inside a finite
volume Vo around x0 and whose radius is in between r and r + Jr (the dimensions of this
function are [.Fo] = L-1 whereas [f] = L-1 x L-3 ). The mean V0 within the volume VO
of any quantity 0 (r, x; t) associated with each particle is

Oo(r, xo;t) = 1o(r, x0;t) f(r, x; t) 0 (r, x; t) dVo (x) (3.2)

Let us introduce a local coordinate y around xO, x = x(xo, y) = xo + y, so that

V . - (.) --- V X o" (.) + V y " (.). (3.3)

Using (3.2) for u and ÷, their integral values over Vo become

uo(r, xo;t) o (rxo; t) 1 f(r, xo + y; t) u(r, xo + y; t) dVo(y) (3.4)

O0(r, xo;t) = TFo(r, xo;t) IV. f(r, xo + y;t)i'(r, xo +y;t)dVo(y) (3.5)
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Using (3.3) to express the divergence term Vx. (f u) = V 0 " (f u)+ Vy. (f u), a transport
equation for .Yo can be derived by integrating (2.11) inside volume V0 :

Jof dVo + VN7, (Jf udVo) + JoVy " (f u) dVo +

19 fL7' d) JK dVo (3.6)
As in general x0 and V0 vary in time, we need to switch volume integration and time
derivative in the first term of the above equation. Using Leibnitz rule and (3.1), one has:

0- = a f d Vo = oOf dV° + fS 'nodSo (3.7)

where So is the surface around Vo and Sf is the velocity of So with respect to the fixed
reference frame. Using (3.7), Gauss theorem and the definitions (3:4) and (3.5) in (3.6),
and introducing the relative velocity with respect to So, w = u - Sf, finally gives

70 (V. (Fo U)) + fw.nodSo=Ko (3.8)at + x $ou)+ Or '0

which is a Boltzmann equation for the integral distribution function To. Equation (3.8)
formally differs from (2.11) because of the surface integral in the left-hand side. This
contains the (unknown) local distribution function f, which must be modeled in some
way. Note, however, that if Vo is a material volume, then u = Sf on So, and the surface
flux goes to zero.

Ergodic hypothesis
In the previous derivation we had to introduce an ensemble of realizations in order to
derive a local Boltzmann equation which we then integrated over a finite volume. We
now make the hypothesis that V0 is large enough to contain a population of particles
that we can by-pass the ensemble. In other words, we hypothesize that the integrated
Boltzmann equation (3.8) is valid for a single realization if Vo is large enough. Typically,
the grid size in cloud codes is A > 1 m while A f- 7/-• 10-3 m, so each grid cell contains
at least 109 particles.

3.1. Ensemble averages

The total number of particles No in spatial volume V0 can be obtained by integrating F0
over all possible radii,

No(xo;t) = Fo (r, xo;t) dr. (3.9)

Using (3.9), the ensemble average (0o) of any variable 0 is obtained by integrating (3.2)
over r:

(0) (xo;1t) ) io(r, xo;t)Fo(r, xo;t)dr (3.10)¢o>~N (x~)=g(xo; t) f

In particular, the ensemble velocity and radius growth rate are

(u) (Xo;t) No(xo;t) uo(r, xo;t)'Fo(r, xo;t) dr,

(o) (xo; t) = 1 ] o(r, xo; t)F•o(r, xo; t) dr (3.11)No (xo; t) 1,0
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For further analysis, it will be useful to introduce the mean radius, (ro), and the variance,
(Aro), of the population. Using (3.2), these are given by

(ro) (xo; t) = r Yo0(r, xo; t) dr (3.12)

(Aro) (xo;t) = NJ ) ft) [r - (ro) (uo;Ft)] 2  o(r, x0 ; t) dr (3.13)

Note that u(r, y; t) and (uo) (xo; t) (same for ? and (?o)) have a different physical mean-
ing: u(y) represents the velocity of a particle in a neighboorood of y. On the other hand,
u0 (xo) represents a statistical average within a population of particles and is a continuum
velocity field, associated to any point, xo, of the physical domain. Indeed, one could, in
principle, obtain (uo) and (t o) as

1No No

( ) up, 1O )= NoE p (3.14)

where up and ÷p are the velocity and the radius growth rate of particle p inside V0 . In
the limit of No --+ 0o, (3.11) and (3.14) are equivalent but we only have access to TFo
because the details concerning up and ?p of each physical particle are unknown.

The next step is to relate the continuum fields (uo) and (t o) to the corresponding flow
variables. As we do not consider here any force acting on particles (Sec. 2), they are
simply convected by the fluid. Therefore, there is no reason why two particles of the
same population and different radius should have different velocities, i.e. u0 is statistically
uncorrelated with r,

uo(r, xo; t) - (uo) (xo; t) = uf(xo; t) (3.15)

where uf(xo; t) is the fluid velocity at xo. The same arguments, cannot be applied to to,
i.e. ÷o 5 (t)o, because each particle of the population may have a different growth rate
due to different "reactions" to turbulent fluctuations in the flow-field, as discussed next.

4. Particle growth by condensation

The growth of the radius of a single particle in a medium at rest can be simply derived
by considering a diffusion equation for water vapor on a particle surface (Pruppacher &
Klett (1997) p. 502) and is given by

dr D (p, - p!,(T)) D S-- T= = (4.1)dt rp,, r rp,, r

where D is the diffusion coefficient of water vapor in air and r is the psychrometric
correction associated with the latent heat of condensation; and p,•, is the density of ei-
ther water or ice. The vapor densities Pv and ps (T) are evaluated, respectively, at some
"ambient" condition far from the particle and at the surface of the particle (which co-
incides with the saturation value because vapor there is in thermodynamic equilibrium
with water/ice). Thus, in such a single-particle picture, the radius growth rate is only
controlled by the supersaturation S = p, - p'. As first pointed out by Srivastava (1989)
(see also Khvorostyanov & Curry 1999), this description cannot be extended straightfor-
wardly to a population of particles. In fact, even in the absence of turbulence and uniform
S initially, the available vapor in a cloud is not equally distributed among all particles
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because of their random spatial distribution, so that the effective supersaturation avail-
able at a droplet surface ("microsaturation".), can differ significantly from the overall
ensemble averaged supersaturation ("macrosaturation") (Srivastava 1989). In addition,
in a turbulent cloud, each particle "reacts" in a different way to turbulent fluctuations in
the flow-field: for example, if a supersaturation fluctuation arises, it will be absorbed by
each particle through a complex diffusional process of vapor involving all elements of the
population (Srivastava 1989). Several approaches have been developed in the atmospheric
science literature (Pruppacher & Klett 1997) to try to solve this complex problem. One
of these, the so-called "stochastic condensation" approach performs Reynolds averaging
on the equation for condensational growth, resulting in covariances that can be though
as "Reynolds stresses" (Shaw 2003). In particular, we follow Khvorostyanov & Curry
(1999) (see also Pruppacher & Klett (1997) p.505) who use kinetic theory to relate the
micro- and macro-saturation in a cloud. Their arguments are as follows. For the moment
consider the situation where the particle radius is so small to be comparable with the
mean free path of vapor molecules. In this case, one should account for the Brownian
motion of molecules, that is the diffusion associated to the (random) molecular impact on
particles surface. As shown by Pruppacher & Klett (1997), this can be done in (4.1) by
introducing a modified diffusion coefficient D*(r) which depends linearly on the radius r
(Pruppacher & Klett (1997) p.506). It can be argued (Crowe et al. 1998; Khvorostyanov
& Curry 1999) that the effects of turbulent fluctuations of vapor density or in super-
saturation is similar to Brownian motion, whereas the molecular impact on particles is
substituted by their interaction with turbulent eddies (note that this picture can also
be extended to account for equivalent Brownian dispersion of particles, induced by fluc-
tuating fluid forces rather than density fluctuations) (Crowe et al. 1998). The "micro"
supersaturation Sp available to particle p of an ensemble is

= (So (4.2)
(ro)

where (So) (xo; t) is the ensemble supersaturation available to the population within
volume V0 . It represents the supersaturation that would be at xo if there were no particles,
then it can be thught as the fluid supersaturation at x0 , (So) (xo; t) = Sf(xo; t). Using
(4.2) and the previous formalism (rp --4 r; Sp -- S(r,y); ÷p -- i(r,y)), one gets to

S(r,y) (So) Sf
(4.3)

(r,y) = DS(r, y) = DSf (4.4)
rpy= r -- =p (ro)

Substituting (4.3) and (4.4) into (3.11) finally gives

(÷o[) = I f.dFoýodr = ". Yf DS(r,y) dVo dr •_ DSf (4.5)
Nro/ NO(xo;t) J or f~orp ror -p. (ro)

5. Method of moments

Even neglecting the surface term, (3.8) is a p.d.e. in four-dimensional space (r, x0 ; t)
that can only be solved numerically. Some atmospheric cloud codes solve a transport
equation for a distribution function by discretizing the particle size r in a finite number of
bins, at each grid location (although it is not explicitly mentioned, they are conceptually
discretizing (3.8) with neglected surface terms).



Turbulent clouds 45

In this section, we present a simulation strategy based on the method of moments
proposed in Paoli et al. (2002). The moments mk of the distribution ro are defined by

mk(xo;t) = j rk o(r, xo;t)dr (5.1)

Multiplying (3.8) by rk gives

a j r'kr 0 dr) + V-~0. ( koudr ) -~o~or 0~ + k j r'. 0iý 0 dr (5.2)

Using (3.15), (4.5) and (5.1) and assuming that Fo --ý 0 sufficiently fast as r --+ oo, (5.2)
becomes Omk+ = D Sf kmk-1 (5.3)

at) rp. (ro)

Under all assumptions made, (5.3) describes the evolution of the moments of the integral
distribution function To. An attractive property, deriving from the microsaturation model
(4.2), is that the evolution of the kth moment only depends on the previous order moment
which allows one to close the system (5.3) without any further assumptions and without
presuming the shape of Fo. Using (3.9)-(3.13) and (5.1), the zero and the first two
moments are easily found and are related to the ensemble average radius and variance,

= No, mi = No (ro) , M2 = NO [(Ar2) + (ro).2] (5.4)

The corresponding evolution equations are (we put a =- D/Fpl)
ONoO0t + Vxo (uf No) = 0 (5.5)

1t + Vx0 " (uf mi) = CSf No (5.6)

Om2
6t- + Vxo" (uf M 2) = 2 aSf No (5.7)

These equation are coupled to the continuum fluid phase through uf and Sf. In partic-
ular, an increase in particle radius by condensation implies vapor depletion j,, with

v "- p dr 4rrpLD S dr = -47rpwaSf NOm2 (5.8)
Srp (ro) in m

The usual convection-diffusion-reaction equation for a scalar Y, in conservative form
(Pv =- Y,, pf where pf is the total gas phase density) then becomes:

O-t + Vo0 " (uf pv) + V. 0 .o (pfD V.. Y,) = = -47rp.aSf Nom 2  (5.9)

at M

Under all approximations made, (5.5)-(5.7) and (5.9) (together with Navier-Stokes equa-
tions) describe the evolution of the first moments of the size distribution of a population
of particles. These moments can be solved by using either an Eulerian or a Lagrangian
description as discussed next.

Eulerian description
In this case, one has to solve for Mk using (5.5)-(5.7) with the further condition that the
volume Vo is constant in time (in discretized form it can be the volume of a grid cell). It is
worth mentioning that Fo and Mk are continuous functions of space (not grid averages!),
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so their gradients contain all spatial fluctuations in a turbulent flow. In particular, if they

are filtered in a LES approach, the correlations mk uf and mk Sj exist at subgrid scale

level and must be modeled.

An approximate Lagrangian method

Let us devide the total number of particles in the cloud into N, "clusters", each containing

a fixed number, Nj, of particles (where j = 1, .. ,Ne). The position of each cluster is

assumed to evolve according to

dx-o

dx = u, (x) 
(5.10)

where xi is the center of the volume V4 containing cluster j and uf(x•) is the fluid

velocity at x3. Note that we are assuming that the cluster advects rigidly without de-

forming. Introducing the total derivative dO/dt = 80/Ot + Vx 0O ()uf in (5.5)-(5.7), one

can "track" the moments of each cluster j as (note that the zeroth moment equation,

Nj = const is now trivial)

dm = N 2  (5.11)
dt mi1

dm- = 2 aS N3 (5.12)

where Sf =- Sf (x') is the fluid supersaturation at x•. The advantage of the Lagrangian

approach is that the surface term in (3.8), which was neglected to get to (5.5)-(5.7), is

now zero because Voi is a material volume, u = S} on Sg for allj.

6. Conclusions

In this note we derived a transport equation for the radius distribution function of a

population of particles in an atmospheric cloud. We used a simple stochastic condensation

model for the radius growth (taken from the atmospheric science literature) to relate the

microsaturation around each particle to the macrosaturation of the entire population.

Finally, we described a procedure to solve for the moments of the distribution, and showed

that this can be either used in Eulerian continuum formulations or Lagrangian tracking

of "clusters" of particles. Future plans include testing of this method by comparison

with DNS of homogeneus and isotropic turbulence and individual particle tracking; and

application of the method to natural and contrail-generated cirrus.
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